

Welcome to MozVPN’s documentation!

MozVPN is an alternative command line interface (CLI) and
and graphical user interface (GUI) client for MozillaVPN.

Contents:

	MozVPN
	Short Usage

	License

	Credits

	Installation
	Installing helper tools MozWire and wireguard

	Installing a stable release of MozVPN

	Installing MozVPN from sources

	Setup
	Get a subscription for MozillaVPN

	Setting up MozillaVPN access Linux

	Testing

	Usage
	Using the graphical User Interface (GUI)

	Command Line Interface (CLI)

	mozvpn
	mozvpn package

	Contributing
	Types of Contributions

	Get Started!

	Pull Request Guidelines

	Tips

	Deploying

	Credits
	Development Lead

	Contributors

	History
	0.2.0 (2021-05-24)

	0.1.0 (2021-05-06)

Indices and tables

	Index

	Module Index

	Search Page

MozVPN

[image: _images/mozvpn.svg]
 [https://travis-ci.com/ralhei/mozvpn][image: Documentation Status]
 [https://mozvpn.readthedocs.io/en/latest/?version=latest]MozVPN is an alternative CLI and GUI client for MozillaVPN.

When MozillaVPN showed up in May 2021 Mozilla published clients for Ubuntu
Linux only, which didn’t run on my OpenSuse machine. This was the motivation
to implement this alternative client.

Short Usage

The following instructions assume that everything is installed and setup
(incl. wireguard and wireguard-tools)
and you have a subscription for MozillaVPN. For details see the
complete documentation on https://mozvpn.readthedocs.io.

Graphical User Interface (GUI)

To start the GUI for mozvpn just run:

$ mozvpn gui
(or alternatively)
$ xmozvpn

A window should open and allow you to select the desired VPN server endpoint
from a choice of cities in various countries. Then just click the connect
button, and you should have a running VPN.

Command Line Interface (CLI)

The command line interface can be used to connect or disconnect to MozillaVPN
from a linux or windows shell. Also the current status of the connection can be obtained.

Examples:

$ mozvpn status
Not connected
$ mozpvn up de4-wireguard # must match files in /etc/wireguard/*.conf
Connected to: de4-wireguard
$ mozvpn status
Connected to: de4-wireguard
$ mozpvn down de4-wireguard
Disconnected from: de4-wireguard
$ mozvpn status
Not connected

License

	Free software: GNU General Public License v3

	Documentation: https://mozvpn.readthedocs.io. (to be done).

Credits

This package was created with Cookiecutter [https://github.com/audreyr/cookiecutter] and the audreyr/cookiecutter-pypackage [https://github.com/audreyr/cookiecutter-pypackage] project template.

Installation

Note

This installation was tested on Linux (opensuse) only so far. In principle
it should work on most Linux variants without modifications. Also there is
a good chance that MacOS could be supported.

If you find problems please file an issue at the github repo, or even better
submit a pull request with a decent solution to the problem.

Warning

MozVPN should per se also work on Windows. The installation for
required packages MozWire, WireGuard, and MozVPN should work just
fine under Windows.

However the setup of MozVPN, i.e. the point where mozpvn setup is run
(see below) currently only supports Linux-like systems.

If you run mozpvn setup --dry-run you can see what commands would be run
on Linux. If you could provide something similar for Windows this would be awesome.

Installing helper tools MozWire and wireguard

MozVPN is based on two other applications that need to be installed first, namely MozWire
and wireguard.

MozWire

This tool has basically to be run once only. It connects to your MozillaVPN account
(subscription) and downloads a set of approx. 400 configuration files, each one
providing connection details and credentials for a VPN connection to a server
somewhere in the world. (MozVPN will do the actual download for you, so no worry here).

Installing MozWire

MozWire can be downloaded or downloaded as explained on https://github.com/NilsIrl/MozWire.
There you’ll find binaries for Linux, MacOS, and Windows. Download the binary for your
operating system and install it in a place where it can be found when being called
from the command line, e.g. /usr/local/bin or ~/bin in case of Linux or MacOS.
Just make sure that this path is contained in your shell’s PATH variable. Do the
corresonding setup for Windows if that is your OS.

If nothing fits the MozWire homepage also explains how to compile it from sources. This
is basically a one line command and worked like a charm in my case. The only tool
required for compiling is cargo which is usually installed on Linux machines
with sudo zypper install cargo (OpenSuse) or sudo apt install cargo (Debian/Ubuntu).
Further explanations about installing cargo can be found at
https://doc.rust-lang.org/cargo/getting-started/installation.html.

Once installed you should find the mozwire executable in your PATH.

WireGuard

Because MozillaVPN is based on the WireGuard protocol the corresponding binary and
helper tools have to be installed as well.

WireGuard uses the configuration files provided by MozWire and uses those to
make the actual connection to the VPN servers.

Installing WireGuard

The page https://www.wireguard.com/install/ describes this for more than 20 operating
systems. For Linuxes it is usually a command like sudo zypper install wireguard-tools
(OpenSuse) or sudo apt install wireguard (Debian/Ubuntu).

Once installed you should find the two executables wg and wg-quick in your
PATH.

Installing a stable release of MozVPN

After having installed MozWire and WireGuard we finally can install MozVPN itself.

To install MozVPN, run this command in your terminal:

$ pip install mozvpn

This is the preferred method to install mozvpn, as it will always install the most
recent stable release. MozVPN requires Python3.6 or newer.

You can either install it in a local virtual environment somewhere in your home
directory, or system-wide (on a Linux like OS you need to be root or use sudo,
e.g. sudo pip install mozvpn).

If you don’t have pip [https://pip.pypa.io] installed, this Python installation guide [http://docs.python-guide.org/en/latest/starting/installation/] can guide
you through the process.

Installing MozVPN from sources

The sources for MozVPN can be downloaded from the Github repo [https://github.com/ralhei/mozvpn].

You can either clone the public repository:

$ git clone git://github.com/ralhei/mozvpn

Or download the tarball [https://github.com/ralhei/mozvpn/tarball/master]:

$ curl -OJL https://github.com/ralhei/mozvpn/tarball/master

Once you have a copy of the source, you can install it with:

$ python setup.py install

Congratulation! Now the software part is done. The next step will be to
setup the configuration, as explained in the next section Setup.

Setup

Get a subscription for MozillaVPN

Now it is time to get a subscription for MozillaVPN, if you don’t have one already.
Without a subscription you won’t be able to setup
VPN connections via MozillaVPN. Details can be found at
https://www.mozilla.org/en-US/products/vpn/.

The following step will require you to enter your username and password for
MozillaVPN, so make sure you saved them somewhere (e.g. in a password manager).

Setting up MozillaVPN access Linux

Luckily MozVPN has built in a setup feature which does the following steps for you.
This setup has to be run only once. It might be required to be run later again, e.g.
if your MozillaVPN subscription has expired and you have renewed it. But for now
running this once is sufficient.

The command to run is:

mozvpn setup

or:

mozvpn setup --verbose

if you’d like to see the details.

You are required to enter two sets of credentials in this process (one for MozillaVPN
and one for root), so please read the following descriptions (if you are interested
in the details) or just follow the what is happening in your browser and in the shell
where you started mozvpn setup.

The steps performed by mozpvn setup are:

	It runs MozWire, which itself opens a page in your Firefox (or possibly other browser)
asking for your MozillaVPN credentials. Type them into the MozillaVPN login page
if your are not already logged in.

This stage of the setup will download approx. 400 WireGuard configuration and
credential files into a local directory on your computer.

	Because these WireGuard configuration files do not contain detailed information
about their server geo-locations a little script is run to determine those
locations for each WireGuard configuration file. This geo-location information
is stored in one single locations.csv file for you. No interaction required
here from your side.

	The WireGuard configuration files and the locations.csv file have to be
installed in /etc/wireguard on Linux-like or MacOS systems. This requires
root permissions.

	To allow MozVPN to run as normal user sudo-privileges have to be setup
for the WireGuard tools. This is achieved by creating a new Linux group mozvpn
and adding those users to it who should be allowed to run MozVPN on your computer.
Note that - after this is done - all affected users have to logout and login again
to activate this new group membership for them. You will be told later when to
do this.

	A new sudo-file will be created in /etc/sudoers.d/mozvpn giving all members
of group mozvpn the privileges to run wg-quick with root privileges.
This is the tool that actually sets up and tears down the VPN connection under the hood.

You can check the commands for all five steps beforehand by running mozpvn setup --dry_run.
This will print the commands to the shell only without actually executing them.
If you have security concerns you can then
run those commands yourself without going through mozpvn setup. This also allows
you do adapt them if you prefer or require an alternative setup on your computer.

Testing

Once everything is in place you should be able to activate and tear down a connection
to one of Mozilla’s VPN servers through the command line, simply by running the
following commands from the shell:

$ mozvpn status
Not connected
$ mozpvn up de4-wireguard # must match a file in /etc/wireguard/*.conf
Connected to: de4-wireguard
$ mozvpn status
Connected to: de4-wireguard
$ mozpvn down de4-wireguard
Disconnected from: de4-wireguard
$ mozvpn status
Not connected

Usage

Using the graphical User Interface (GUI)

To start the GUI for mozvpn just run:

$ mozvpn gui
(or alternatively)
$ xmozvpn

A window should open and allow you to select the desired VPN server endpoint
from a choice of cities in various countries. Then just click the connect
button, and you should have a running VPN.

Command Line Interface (CLI)

The command line interface can be used to connect or disconnect to MozillaVPN
from a linux or windows shell. Also the current status of the connection can be obtained.

Examples:

$ mozvpn status
Not connected
$ mozpvn up de4-wireguard # must match files in /etc/wireguard/*.conf
Connected to: de4-wireguard
$ mozvpn status
Connected to: de4-wireguard
$ mozpvn down de4-wireguard
Disconnected from: de4-wireguard
$ mozvpn status
Not connected

mozvpn

	mozvpn package
	Submodules

	mozvpn.cli module

	mozvpn.mozvpn module

	mozvpn.mozvpn_gui module

	mozvpn.wireguard module

	Module contents

mozvpn package

Submodules

mozvpn.cli module

mozvpn.mozvpn module

Main module.

	
mozvpn.mozvpn.determine_ip_location(ip: str) → Dict

	Determine location of IP address.

	Parameters

	ip – IP address

	Returns

	dict containing (among others) fields country, region, city

	
mozvpn.mozvpn.find_vpn_server_locations(wg_config_files: List[str])

	Find geographic locations of wireguard VPN server endpoints.

	Parameters

	wg_config_files – list of wireguard config files/directories

	Returns

	list of dictionaries containing configuration/location data.

mozvpn.mozvpn_gui module

mozvpn.wireguard module

Functions for interacting with wireguard command line tools.

	
exception mozvpn.wireguard.CommandError(msg, cmd)

	Bases: Exception

	
property msg

	

	
exception mozvpn.wireguard.ControlledExit

	Bases: Exception

Raise when error handling is finished and program can gracefully exit.

	
exception mozvpn.wireguard.WireguardError

	Bases: Exception

Raised when external wireguard or wg-quick command reported an error.

	
mozvpn.wireguard.check_wireguard_commands() → dict

	
	Check absolute path to ‘wg’ and ‘wg-quick’ commands if they are installed
	and executable.

	Returns

	‘/usr/bin/wg’, ‘wg-quick’: ‘/usr/bin/wg-quick’}

	Return type

	{‘wg’

	Raises

	RuntimeError if path to wireguard command could not be determined. –

	
mozvpn.wireguard.connect(conf_or_if: str)

	Establish connection to VPN server via wg-quick command.

	Parameters

	conf_or_if – Either
- Name of wireguard conf file, e.g. “/path/to/us122-wireguard.conf”
- Name of wireguard interface, e.g. “us122-wireguard”

In this case the corresponding configuration file has to exist
in the /etc/wireguard/ directory.

	
mozvpn.wireguard.disconnect(conf_or_if: str)

	Shut down connection to VPN server via wg-quick command.

	Parameters

	conf_or_if – Either
- Path to wireguard conf file, e.g. “/path/to/us122-wireguard.conf”
- Name of wireguard interface, e.g. “us122-wireguard”

In this case the corresponding configuration file has to exist
at /etc/wireguard/INTERFACE.conf.

	
mozvpn.wireguard.interface() → str

	Return interface of VPN connection, if available.

	Returns

	Name of connected interface (e.g. ‘de12-wireguard), otherwise None, if not connected.

	
mozvpn.wireguard.ipinfo()

	Obtain externally visible IP information from https://ipinfo.io

	Returns: JSON like
	
	{
	“ip”: “185.213.155.160”,
“city”: “Frankfurt am Main”,
“region”: “Hesse”,
“country”: “DE”,
“loc”: “50.1155,8.6842”,
“org”: “AS39351 31173 Services AB”,
“postal”: “60311”,
“timezone”: “Europe/Berlin”,
“readme”: “https://ipinfo.io/missingauth”

}

	
mozvpn.wireguard.mullvad_info()

	Obtain externally visible IP information from https://am.i.mullvad.net/json

Note: Mullvad is the provider behind MozillaVPN.

	Returns: JSON like
	
	{
	“ip”: “212.14.256.33”,
“country”: “Germany”,
“city”: “Stadt”,
“longitude”: 8.2,
“latitude”: 44.4,
“mullvad_exit_ip”: false,
“blacklisted”: { … },
“organization”: “Telecom”

}

	
mozvpn.wireguard.run_command(cmd: str, shell: bool = False, verbose: bool = False, dry_run: bool = False) → str

	Run external command, and collect results or errors.

	Parameters

	
	cmd – The command to be executed

	shell – if True run command via shell.

	verbose – if True print command to stdout.

	dry_run – if True then the commands will only be written to stdout only.
and not executed.

	Raises

	CommandError in case of failling command execution. –

	
mozvpn.wireguard.setup_wireguard_configuration(user: str, verbose: bool, dry_run: bool, limit: int)

	Setup configurations needed to operate wireguard.

	Parameters

	
	user – name of primary user who should be allowed to use MozVPN.

	verbose – if True print command to stdout.

	dry_run – if True then the commands will only be written to stdout only.

	limit – Limit the number of servers downloaded via mozwire
and not executed.

	
mozvpn.wireguard.status(ip: bool = False) → str

	Show status of VPN connection.

	Parameters

	ip – if given add currenlty visible external IP address to connection status.

	Returns

	String telling if VPN connection is up, and if so, which server is currently
is used. The IP address will optionally be added.
Examples:
- ‘Not connected’
- ‘Connected to de10-wireguard’
- ‘Connected to de10-wireguard, ip: 234.12.642.0’

Module contents

Top-level package for mozvpn.

Contributing

Contributions are welcome, and they are greatly appreciated! Every little bit
helps, and credit will always be given.

You can contribute in many ways:

Types of Contributions

Report Bugs

Report bugs at https://github.com/ralhei/mozvpn/issues.

If you are reporting a bug, please include:

	Your operating system name and version.

	Any details about your local setup that might be helpful in troubleshooting.

	Detailed steps to reproduce the bug.

Fix Bugs

Look through the GitHub issues for bugs. Anything tagged with “bug” and “help
wanted” is open to whoever wants to implement it.

Implement Features

Look through the GitHub issues for features. Anything tagged with “enhancement”
and “help wanted” is open to whoever wants to implement it.

Write Documentation

mozvpn could always use more documentation, whether as part of the
official mozvpn docs, in docstrings, or even on the web in blog posts,
articles, and such.

Submit Feedback

The best way to send feedback is to file an issue at https://github.com/ralhei/mozvpn/issues.

If you are proposing a feature:

	Explain in detail how it would work.

	Keep the scope as narrow as possible, to make it easier to implement.

	Remember that this is a volunteer-driven project, and that contributions
are welcome :)

Get Started!

Ready to contribute? Here’s how to set up mozvpn for local development.

	Fork the mozvpn repo on GitHub.

	Clone your fork locally:

$ git clone git@github.com:your_name_here/mozvpn.git

	Install your local copy into a virtualenv. Assuming you have virtualenvwrapper installed, this is how you set up your fork for local development:

$ mkvirtualenv mozvpn
$ cd mozvpn/
$ python setup.py develop

	Create a branch for local development:

$ git checkout -b name-of-your-bugfix-or-feature

Now you can make your changes locally.

	When you’re done making changes, check that your changes pass flake8 and the
tests, including testing other Python versions with tox:

$ flake8 mozvpn tests
$ python setup.py test or pytest
$ tox

To get flake8 and tox, just pip install them into your virtualenv.

	Commit your changes and push your branch to GitHub:

$ git add .
$ git commit -m "Your detailed description of your changes."
$ git push origin name-of-your-bugfix-or-feature

	Submit a pull request through the GitHub website.

Pull Request Guidelines

Before you submit a pull request, check that it meets these guidelines:

	The pull request should include tests.

	If the pull request adds functionality, the docs should be updated. Put
your new functionality into a function with a docstring, and add the
feature to the list in README.rst.

	The pull request should work for Python 3.5, 3.6, 3.7 and 3.8, and for PyPy. Check
https://travis-ci.com/ralhei/mozvpn/pull_requests
and make sure that the tests pass for all supported Python versions.

Tips

To run a subset of tests:

$ pytest tests.test_mozvpn

Deploying

A reminder for the maintainers on how to deploy.
Make sure all your changes are committed (including an entry in HISTORY.rst).
Then run:

$ bump2version patch # possible: major / minor / patch
$ git push
$ git push --tags

Travis will then deploy to PyPI if tests pass.

Credits

Development Lead

	Ralph Heinkel <rh@ralph-heinkel.com>

Contributors

None yet. Why not be the first?

History

0.2.0 (2021-05-24)

	Added ‘setup’ functionality to mozvpn

	Extended documentation, added installation docs

0.1.0 (2021-05-06)

	First commit on github.

 Python Module Index

 m

 		 	

 		
 m	

 	[image: -]
 	
 mozvpn	

 	
 	
 mozvpn.mozvpn	

 	
 	
 mozvpn.wireguard	

Index

 C
 | D
 | F
 | I
 | M
 | R
 | S
 | W

C

 	
 	check_wireguard_commands() (in module mozvpn.wireguard)

 	CommandError

 	
 	connect() (in module mozvpn.wireguard)

 	ControlledExit

D

 	
 	determine_ip_location() (in module mozvpn.mozvpn)

 	
 	disconnect() (in module mozvpn.wireguard)

F

 	
 	find_vpn_server_locations() (in module mozvpn.mozvpn)

I

 	
 	interface() (in module mozvpn.wireguard)

 	
 	ipinfo() (in module mozvpn.wireguard)

M

 	
 	
 module

 	mozvpn

 	mozvpn.mozvpn

 	mozvpn.wireguard

 	
 mozvpn

 	module

 	
 	
 mozvpn.mozvpn

 	module

 	
 mozvpn.wireguard

 	module

 	msg (mozvpn.wireguard.CommandError property)

 	mullvad_info() (in module mozvpn.wireguard)

R

 	
 	run_command() (in module mozvpn.wireguard)

S

 	
 	setup_wireguard_configuration() (in module mozvpn.wireguard)

 	
 	status() (in module mozvpn.wireguard)

W

 	
 	WireguardError

 nav.xhtml

 Table of Contents

 		
 Welcome to MozVPN’s documentation!

 		
 MozVPN

 		
 Short Usage

 		
 Graphical User Interface (GUI)

 		
 Command Line Interface (CLI)

 		
 License

 		
 Credits

 		
 Installation

 		
 Installing helper tools MozWire and wireguard

 		
 MozWire

 		
 WireGuard

 		
 Installing a stable release of MozVPN

 		
 Installing MozVPN from sources

 		
 Setup

 		
 Get a subscription for MozillaVPN

 		
 Setting up MozillaVPN access Linux

 		
 Testing

 		
 Usage

 		
 Using the graphical User Interface (GUI)

 		
 Command Line Interface (CLI)

 		
 mozvpn

 		
 mozvpn package

 		
 Submodules

 		
 mozvpn.cli module

 		
 mozvpn.mozvpn module

 		
 mozvpn.mozvpn_gui module

 		
 mozvpn.wireguard module

 		
 Module contents

 		
 Contributing

 		
 Types of Contributions

 		
 Report Bugs

 		
 Fix Bugs

 		
 Implement Features

 		
 Write Documentation

 		
 Submit Feedback

 		
 Get Started!

 		
 Pull Request Guidelines

 		
 Tips

 		
 Deploying

 		
 Credits

 		
 Development Lead

 		
 Contributors

 		
 History

 		
 0.2.0 (2021-05-24)

 		
 0.1.0 (2021-05-06)

_static/file.png

_static/minus.png

_static/plus.png

